Synthesis and Insertion Reactions of Cationic Alkylbis(cyclopentadienyl)titanium Complexes

Manfred Bochrnann" and Ladislav M. Wilson

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

The electrophilic 14-electron alkyltitanium cations $[cp_2TiMe]^+$ (cp = η^5 -cyclopentadienyl) and $[ind_2TiMe]^+$ (ind = 75-indenyl), accessible *via* several routes, form stable complexes [cp2TiMe(L)]+ and [ind2TiMe(L)]+, L = NH3, PMe3, pyridine, MeCN, ButCN and react readily with CO and ButNC; the insertion of nitrites into titanium-carbon bonds is described.

Although homogeneous catalysts for Ziegler-Natta polymerisations based on cp₂TiCl₂-AlR_nCl_{3-n} (cp = η ⁵-C₅H₅) systems are well-known,¹ the mechanistic details of this reaction are still under discussion.2 In earlier work the participation of cationic alkyl complexes $[cp_2TiR]^+$ in polar solvents has been suggested, 3 though no such compound was isolated until the recently reported preparation of a cationic vinyltitanium complex4 derived from alkyne insertion into a $[cp_2TiMe]^+$ intermediate. Here we report the synthesis of the first cationic **alkylbis(cyclopentadieny1)-** and alkylbis(in-

Scheme 1. *Reagents and conditions:* i, $HBF₄·OEt₂$ (1 equiv.), $-CH₄$, room temp.; ii, pyridine or aniline; iii, THF, reflux; iv, NH4X, THF, room temp., -CH₄; v, MeCN; vi, NaBPh₄ in MeCN, room temp.; vii, NaBPh₄ and L in THF; viii, **(5c)** in MeCN, 1 bar CO, room temp.; ix, **(5c)** in MeCN, ButNC (2 equiv.).

deny1)-titanium complexes and their reactions with carbon monoxide, t-butyl isocyanide, and alkyl and aryl cyanides.

Treatment of cp_2TiMe_2 , (1), with hydrofluoroboric aciddiethyl ether in diethyl ether (Scheme 1) gives quantitatively methane and an orange, insoluble complex **(2)t** which analyses for ${[cp_2TiMe|BF_4]}_n$ and liberates a second equivalent of methane on addition of further $HBF₄·OEt₂$. The solid state 13C magic angle spinning (m.a.s.) n.m.r. spectrum of (2) shows two signals at δ 121.5 (C₅H₅) and 38.1 (Me). In spite of the expected highly electrophilic character of the $[cp₂TiMe]⁺$ ion, there is no i.r. evidence for co-ordination of BF_4 ⁻ in the solid state,⁵ though in refluxing tetrahydrofuran (THF) or on addition of N-bases (pyridine, aniline, or acetonitrile) electrophilic attack on the anion leads to the formation of cp₂Ti(Me)F and cp₂TiF₂; the latter is isolated as bright-yellow needles in 60% yield. Surprisingly and contrary to the behaviour of related $Zr\ddagger$ and Sc⁶ compounds, formation of a THF complex $[cp_2Ti(Me)(THF)]^+$ is not observed.§

Treatment of (1) with $NH₄X$ (X = PF₆, ClO₄) in THF affords the ammine complexes $[cp_2TiMe(NH_3)]X$ (3a,b). Attempted ligand exchange with pyridine or aniline leads to the isolation of cp_2TiF_2 and is only successful with acetonitrile to give $[cp_2TiMe(NCMe)]X$, (5a,b). The facile F⁻ abstraction from BF_4^- and PF_6^- anions in the presence of base necessitated the synthesis of the BPh₄⁻ salt $(5c)$ which is accessible in

t Satisfactory elemental analyses were obtained for all new compounds. Selected spectroscopic data are: Compound **(2):** i.r.(cm-l) $(CCL$ mull): 3120 (cp), 2980, 2940 sh, 2900, 2870 (Me); (Nujol mull): 500 m, br (Ti-C). **(3a):** i.r. (Nujol): 3370, 3300 m, 3210 w, 1625 s (NH_3) , 3120 (cp), 840 vs, 560 s (PF₆); (CCl₄ mull): 2970, 2895 (Me). **(3b):** i.r. (Nujol): 3340, 3275, 3190 (NH,), 3110 (cp), 1090, 642 $(CIO₄)$. **(Sc):** i.r. (Nujol): 3110 (cp), 2310 w, 2282 m (C \equiv N); ¹H n.m.r. $(in CD₃CN, rel. SiMe₄)$: δ 6.3 (10H, cp), 1.95 (3H, MeCN), 0.69 (3H, Me); I3C: 6 49.0 (Ti-Me). **(6):** i.r. (Nujol): 3110 (cp), 2262 (CN); 1H n.m.r. (in CD₃CN): δ 6.30 (10H, cp), 1.36 (9H, Bu^t), 0.74 (3H, Me). **(7):** i.r. (Nujol): 2260 (CN); 1H n.m.r.: 6 7.15-7.61 (m, PhCN, **BPh4),6.30(10H,cp),0.72(3H,Me). (8):** lHn.m.r.:67,15(m,20H, BPh,), 6.30 (lOH, cp), 1.10 br **(s,** 9H, PMe3), 0.7 (s. 3H, Me). **(9):** 'H n.m.r. (in CD₃CN): δ 8.35–7.75 (m, py), 7.15 (m, BPh₄), 6.28 (10H, cp), 0.73 (3H, Me). **(10):** i.r. (Nujol): 2315 w, 2290 m (MeCN), 1630 $(C=O)$; ¹H n.m.r. (in CD₃CN): 5.81 (10H, cp), 3.08 (s, 3H, MeCO), 1.95(s,3H,MeCN). (1l):i.r. **(Nujol):2290~,2245m(MeCN),219Os** (Bu^tNC) , 1740 (C=N); ¹H n.m.r.: 5.53 (10H, cp), 2.86 (3H, Me-C=), 1.95 (3H, MeCN), 1.66 br (9H, Bu'NC), 1.33 (9H, But). **(12a):** i.r. (Nujol): 3100 w (ind) , $3050 \text{ s (BPh}_4)$, 2262 (C=N) ; ¹H n.m.r.: 7.2-6.1 $(m, ind, BPh₄), 1.33 (9H, Bu^t), -0.29 (3H, Me).$ (13a): i.r. (Nujol): 2262 (GN), 1662 (C=N); 1H n.m.r.: 1.83 (3H, Me), 1.40 (9H, Bu^tC≡N), 0.9 (9H, Bu^t-C=N). (13b): i.r. (Nujol): 2265 (C≡N), 1642 (C=N); $(H n.m.r.: \delta 2.20 (1.8H), 1.81 (1.2H)$ (Me, two isomers).

\$ While this **work** was in progress, an independent preliminary note on related zirconium chemistry has appeared: R. F. Jordan, W. **E.** Dasher, and **S.** F. Echols, *J. Am. Chem. Soc,* 1986, 106, 1718.

§ There **is** evidence for the formation of the acetonitrile complex $[cp₂TiMe(NMeCN)]BF₄$, though it was not isolated in pure form.

Scheme 2. Reagents and conditions: i, NaBPh₄ and RCN in THF, room temp., 2 h; ii, RCN in THF, room temp., 48 h.

high yield *via* the reaction of cp₂Ti(Me)Cl (4) with NaBPh₄ in acetonitrile; (5c) is isolated as brown, rhombic crystals. No reaction takes place in THF alone, though the addition of pivalonitrile, benzonitrile, trimethylphosphine, or pyridine generates **(6), (7), (8),** and **(9),** respectively, as light orange to brown crystalline solids.

Complex $(5c)$ readily inserts CO to give $[cp_2Ti(COMe)$ -(NCMe)]BPh4 **(10).** The acyl group gives rise to an i.r. band at 1630 cm⁻¹, suggesting η^2 -co-ordination as in cp₂Ti(COMe)Cl $(v_{\rm CO}$ 1620 cm⁻¹).⁷ By contrast, reaction of **(5c)** with the sterically demanding Bu^tNC gives the η ¹-iminoacyl compound **(11)** $(v_{C=N}$ 1740 cm⁻¹) as pale-yellow air-stable prisms. The complex contains co-ordinated isocyanide $(v_{C=N}$ 2190 cm⁻¹) and unco-ordinated acetonitrile of crystallisation $[v_{C=N}$ 2290, 2245 cm⁻¹; cf. $v_{C=N}$ in **(5c)**: 2310, 2282 cm⁻¹.

Replacing cyclopentadienyl ligands by indenyl groups results in an enhanced reactivity towards the insertion of nitriles into titanium-carbon bonds (Scheme 2). Thus the nitrile adducts $[(ind)_2$ TiMe(NCR)^{BPh₄ (12a,b) react with an} excess of pivalonitrile or benzonitrile to give the ketimido complexes (13a) $(R = Bu^t: v_{C=N} 1662, v_{C=N} 2262 \text{ cm}^{-1})$ and **(13b)** (a 3:2 mixture of stereoisomers, $R = Ph$, $v_{C=N}$ 1642,

1 *Added in proof.* The X-ray structure of (11) shows the iminoacyl ligand to be η^2 -co-ordinated, irrespective of the high i.r. C=N frequency: **M.** B. Hursthouse and R. L. Short, to be published.

 $v_{C=N}$ 2262 cm⁻¹). These cationic titanium complexes resemble in this respect structurally related scandium compounds; for example, the insertion of nitriles into the scandium-methyl bond of $(C_5Me_5)_2$ ScMe is a facile process,⁸ but has, to our knowledge, not been reported for titanium. \parallel

None of the complexes described reacts with ethylene, butadiene, or acetylenes (including PhC \equiv CSiMe₃, *cf.* ref. 4) under the mild conditions employed in the presence or absence of Lewis acids.

We are grateful to the S.E.R.C. for a postdoctoral fellowship (to L. M. W.) and to David J. Williamson for solid state **13C** measurements.

Received, 7th July 1986; Corn. 926

References

- 1 H. Sinn and W. Kaminsky, *Adv. Organomet. Chem.,* 1980, 18,99; **P.** D. Gavens, M. Bottrill, J. W. Kelland, and **J.** McMeeking in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, vol. 3, ch. 22.5, Pergamon Press, 1982.
- 2 L. Clawson, J. Soto, **S.** L. Buchwald, M. L. Steigerwald, and R. H. Grubbs, J. *Am. Chem. SOC.,* 1985, 107, 3377; G. Fink, W. Fenzl, and R. Mynott, *2. Naturforsch.,* 1985, **40B,** 158; and cited references.
- 3 0. N. Babkina, E. A. Grigoryan, F. **S.** Dyachkovskii, **A.** E. Shilov, and N. **I.** Shuvalava, *Zh. Fiz. Khim.,* 1969,43, 1759 *(Chem. Abstr.,* 71, 123380~); E. A. Grigoryan, F. **S.** Dyachkovskii, N. M. Semenova, and **A.** E. Shilov, *Kinet. Mech. Polyreactions, Int. Symp. Macromol. Chem. Prepr.,* 1969, **2,** 267 *(Chem. Abstr.,* 75, **64406t).**
- **4** J. J. Eisch, **A.** M. Piotrowski, **S.** K. Brownstein, **E.** J. Gabe, and F. L. Lee, *J. Am. Chem. SOC.,* 1985, 107, 7219.
- *5* W. Beck and K. Schloter, *2. Naturforsch.,* 1978, **33B,** 1214.
- 6 J. Holton, M. F. Lappert, D. G. H. Ballard, R. Pearce, J. **L.** Atwood, and W. E. Hunter, J. *Chem. Soc., Dalton Trans.,* 1979, **54.**
- 7 G. Fachinetti and C. Floriani, *J. Organomet. Chem.,* 1974,71, C5.
- 8 J. E. Bercaw, D. L. Davies, and P. T. Wolczanski, *Organometallics,* 1986, **5,** 443.
- 9 M. R. Collier, M. F. Lappert, and J. McMeeking, *Inorg. Nucl. Chem. Lett.,* 1971, **7,** 689.

| Neither cp₂TiMeCl (ref. 9) nor $(C_5Me_5)_2$ MMe₂ (M = Zr, Hf) (ref. 8) insert nitriles.